Portrait: Adaptive Resolution Molecular Dynamics Simulation

Speaker: Chun I Wang (王俊壹)

2015.07.13
Pioneers

Kurt Kremer
Max Plank Institute for Polymer Research

Matej Praprotnik
University of Ljubljana
Department of Physics (Slovenia)

Luigi Delle Site
Freie Universität of Berlin
Institute for Mathematics
References

Motivation—Features of Soft Matter

Intrinsic multi-scale & Hierarchical features

Computational capability for solution state

Solute molecule

Solvent molecules
Motivation—Multi-Scale Model

Atomistic MD

Coarse-grained MD

Toluene

Densely packed cluster with modest phase separation
Linking Different Levels of Resolution

Quantum mechanism + Molecular mechanism

Atomistic MD + Coarse-grained MD

Forbid to switch between different levels of resolution

Dual-scale model of BPA-PC on a nickel surface
Problems of Combining AMD with CGMD

If molecules can freely exchange between atomistic region & coarse-grained region, ...

- Number of degrees of freedom (DOF) changes.
- Free energy \(A \) associated with DOFs is unequal in the two regions.
- Non-equilibrium & inducing driving force:

\[
A_A \neq A_B, \quad \mu_A \neq \mu_B, \quad P_A \neq P_B, \quad T_A \neq T_B
\]
Idea of Adaptive Resolution Scheme

Geometry induced first-order phase transition

- Keep the equilibrium
 \[\mu_A = \mu_B, \quad P_A = P_B, \quad T_A = T_B \]

- Difference of free energy ≡ latent heat

- No net flux

The free energy \(A \) associated with DOFs explicitly considered in a simulation as a function of \(x \).
Introducing the Transition Regime

Introducing the Transition Regime

Intermolecular force acting between the molecules α and β

\[
\mathbf{F}_{\alpha\beta} = w(x_\alpha)w(x_\beta)\mathbf{F}_{\alpha\beta}^{\text{atom}} + \left[1 - w(x_\alpha)w(x_\beta)\right]\mathbf{F}_{\alpha\beta}^{\text{CG}}
\]

- \(\alpha, \beta\): index of the molecules
- \(w(x)\): weighting function
- \(\mathbf{F}_{\alpha\beta}^{\text{atom}}\): sum of all pair atom interactions between explicit atoms of the molecule \(\alpha\) and \(\beta\)
- \(\mathbf{F}_{\alpha\beta}^{\text{CG}}\): effective pair force between the two molecules

\[
\mathbf{F}_{\alpha\beta}^{\text{atom}} = \sum_{i\alpha, j\beta} \mathbf{F}_{i\alpha j\beta}^{\text{atom}} = -\nabla U_{i\alpha j\beta}^{\text{atom}} \quad ; \quad \mathbf{F}_{\alpha\beta}^{\text{CG}} = -\nabla U_{\alpha\beta}^{\text{CG}}
\]
Introducing the Transition Regime

Intermolecular force acting between the molecules α and β

$$F_{\alpha\beta} = w(x_\alpha)w(x_\beta)F^{\text{atom}}_{\alpha\beta} + \left[1 - w(x_\alpha)w(x_\beta)\right]F^{\text{CG}}_{\alpha\beta}$$

Weighting function

$$w(x) = \begin{cases}
1 & , -d > x \geq -L \\
0 & , +L > x \geq +d \\
\cos^2\left[\frac{\pi}{2d}(x + d)\right], & +d > x \geq -d
\end{cases}$$
Validation of AdResS

RDF & order parameter

Number density profile

Diffusion profile over different time origins

Equation of state

Mean square displacement

- Radius of gyration of the solute (polymer)
- Diffusivity of the solute (polymer)
Progress

2005

Slab model
Tetrahedral molecule

2006

Spherical model
Tetrahedral molecule
Pressure & density correction

2007

Polymer in media of
tetrahedral molecules

w/o correction
w/ correction
Progress

2007
1. Liquid water
2. Applying electrostatic interaction via reaction field method

2012
Within AMD & hybrid regions
1. C$_{60}$ in toluene
2. Implementation of the AdResS into GROMACS

2014
1. Protein in Martini water
2. Bundled-water model

Mathematical expression:

$$F^{\text{atom}}_C(r_{i\alpha j\beta}) = \frac{e_{i\alpha} e_{j\beta}}{4\pi \varepsilon_0} \left[\frac{1}{r_{i\alpha j\beta}^3} - \frac{1}{R_c^3} \left(1 + 2\varepsilon_\text{RF} \right) \right] r_{i\alpha j\beta}.$$
Conclusion

- AdResS allows the free exchange of particles among full-atom region and coarse-grained region, and reduce the computational effort massively.

- AdResS provides a chance to investigate many interesting problems in soft materials which are inherently multiscale.